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Conventional Approach:Conventional Approach:
Static IP CoresStatic IP Cores

Ø IP cores improve productivity and reduce time-to-market.
Ø e.g. Xilinx LogiCore library: 

FFT for N=16, 64, 256 and 1024 on 16-bit complex numbers 

May not match the application’s needs: 
parameters, speed, power, area and 
their trade-off.

library chip
application
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Alternative Approach:Alternative Approach:
IP Core GenerationIP Core Generation

Ø Generate IP cores to match specific application requirements
(speed, area, power, numerical accuracy, and I/O bandwidth…)

Generator
+

Evaluator

Application parameters

Speed / area / 
power requirements 

Optimized 
IP cores
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Design spaceDesign space

Ø DSP transform design 
can be studied at 
several levels. 

Ø More math knowledge 
involved 
⇒ Bigger design space

to explore.

Algorithm

Math

Architecture

Gate

Circuit

Design Space

Designer’s Focus
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ProblemProblem

Ø Problem: gap between transform mathematics and hardware 
design

What I know: 
Finite state machine
Pipelining
Systolic array …

What I know:
Linear algebra
Digital signal processing
Adaptive filter theory …

A math guy A hardware engineer



Slide 6
Slide 6

Bridge:  FormulaBridge:  Formula

Formula 
Representation
Manipulation
Mapping

What I know: 
Finite state machine
Pipelining
Systolic array …

What I know:
Linear algebra
Digital signal processing
Adaptive filter theory …

A math guy A hardware engineer

Ø Solution: - Formula representation of DSP transforms
- Automated formula manipulation and mapping

( ) ( )( ) PFIIDIFDFT ⋅⊗⊗⋅⋅⊗= L222428Formula example
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Outline Outline 

Ø Introduction

Ø Technical Details (illustrated by WHT transform)

q What are the degrees of design freedom?

q How do we explore this design space?

Ø Experimental Results

Ø Summary and Future work
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WalshWalsh--HadamardHadamard TransformTransform

Ø Why WHT?
q Typical access pattern for a DSP transform
q Close to 2-power FFT 
q Study important construct ⊗

Ø Definition
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From Formula to ArchitectureFrom Formula to Architecture

WHT2
3

Addition Subtraction

an F2 block

( )( )( )2422242

2222

)(

3

FIIFIIF

FFFWHT

⊗⊗⊗⊗=

⊗⊗=



Slide 10
Slide 10

Pease AlgorithmPease Algorithm
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Regular routing

Possibility for horizontal folding

Possibility for vertical folding

Pease AlgorithmPease Algorithm
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FoldingFolding

4 F2 blocks

Repeat 3 times

L2
8I4 UF2

8

8

Horizontal 
Folding (HF)

1 F2 block
Folded 

L2
82

2
HF + Vertical 
Folding (VF) Repeat 3 times
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Challenge in Vertical FoldingChallenge in Vertical Folding

Ø Straightforward approach: Memory-based reordering
q Extra control logic to reorder address

q Computation speed is limited by memory speed

Ø Ad-hoc approach: Register routing
q Hard to automate the process

Ø Our approach: formula-based matrix factorization

How to fold 
these wires? 

Folded 
L2

8

L2
N

N ports Q ports
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Factorization of Stride Permutation Factorization of Stride Permutation 
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L2
Q has Q 

input ports
Q=2q, N=2n

[1]. J.H.Takala etc., “Multi-Port Interconnection Networks for Radix-R Algorithms”, ICASSP01 

Example of (L2
64)4 (N=64, Q = 4)
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Freedom in Horizontal FoldingFreedom in Horizontal Folding

Ø WHT2
n has n horizontal stages in the flattened design

q The divisors of n are all the possible folding degrees
q Example:  HF degrees of WHT2

6 can be 1, 2, 3, 6

Ø Effects of more horizontal folding degree

less adders, more
muxs & wiresArea

LowerThroughput
(op / cycle)

Not clearSpeed

SameLatency
(cycle) Less pipeline 

depth 
⇒ lower

throughput
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Freedom in Vertical FoldingFreedom in Vertical Folding

Ø WHT2
n has 2n vertical ports in the flattened design 

q 1, 2, 4… 2n-1 are all possible folding degrees

q Example:  VF degrees of WHT2
6 could be 1, 2, 4, … 32

Ø Effects of more vertical folding degree

less adders, more
regs & muxsArea

LowerThroughput
(op / cycle)

Not clearSpeed 

LongerLatency
(cycle)

Less I/O 
bandwidth 
⇒ longer

computation
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Outline Outline 

Ø Introduction

Ø Technical Details

Ø Experimental Results

Ø Summary and Future work
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Design Space ExplorationDesign Space Exploration

WHT 
Generator

EvaluatorEvaluator

Xilinx FPGA 
Synthesis

Xilinx FPGA 
Synthesis

Technology 
Libary

Bit-width (8)

HF factor
(1,2,3,6)

VF factor
(1,2,4, ... 32)

Xilinx FPGA 
Place&Route
Xilinx FPGA 
Place&Route

Performance 
requirement

Transform size(64)

X = 24 different designs
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Area vs. Folding DegreesArea vs. Folding Degrees

32
16 8 4 2 1

6

1 0

500

1000
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2500
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3500

# of LUTS 

HF 
degree

VF degree

To achieve the same 
area, multiple folding 
options are available. 



Slide 20
Slide 20

Latency vs. Folding Degrees (WHTLatency vs. Folding Degrees (WHT6464))
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Latency vs. Folding Degrees (WHTLatency vs. Folding Degrees (WHT6464))
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Latency vs. Folding Degrees (WHTLatency vs. Folding Degrees (WHT6464))
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Latency is almost 
unaffected by HF, 
except comparing 
flattened design with 
folded design 
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Throughput vs. Folding DegreesThroughput vs. Folding Degrees
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throughput
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Comparison with an Existing Comparison with an Existing 
DesignDesign

[2] A.Amira et al., “Novel FPGA Implementations of Walsh-Hardamard Transforms for Signal Processing”, Vision, 
Image and Signal Processing, IEE Proceedings- , Volume: 148 Issue: 6 , Dec. 2001

0

200

1 2 3

Our fastest design

Design in [2]

Latency(ns)Area (#of slices) Throughput(MOP/s)

Ø WHT8
q 8 bit fixed-point
q FPGA: Xilinx Virtex xcv1000e-fg680  Speed grade: -8
q Compare our fastest generated designs against results reported by Amira, et 

al. [2]

60% more area 

80% reduction in latency

13 times higher throughput
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Comparison with an Existing Comparison with an Existing 
DesignDesign

[2] A.Amira et al., “Novel FPGA Implementations of Walsh-Hardamard Transforms for Signal Processing”, Vision, 
Image and Signal Processing, IEE Proceedings- , Volume: 148 Issue: 6 , Dec. 2001

0

200

1 2 3

Design in [2]

Our smallest design

Latency(ns)Area (#of slices) Throughput(MOP/s)

Ø WHT8
q 8 bit fixed-point
q FPGA: Xilinx Virtex xcv1000e-fg680  Speed grade: -8
q Compare our smallest generated designs against results reported by Amira, 

et al. [2]

Less area

Shorter latency

Higher throughput
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SummarySummary

Ø Large performance variations over the design space of 
horizontal and vertical folding

Ø Automatic design space exploration through formula 
manipulation and mapping can find the best trade-off

Horizontal folding

Performance

throughput / 
latency / area …

Vertical
folding
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Future workFuture work

Pipelining
Systolic array
Distributed Arithmetic
Fix-point vs. Floating-point 
…

DFT
DCT
DST
DWT
…

More DSP
transforms Formula 

Representation
Manipulation
Mapping

More design 
decisions
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Thank youThank you !!

Contact: Fang Fang

Email: ffang@cmu.edu

URL: www.ece.cmu.edu/~ffang


